Optimal Orie~tation Detection of Linear Symmetry
نویسنده
چکیده
The problem of optimal detection of orientation in arbitrary neighborhoods is solved in the least squares sense. It is shown that this corresponds to fitting an axis in the Fourier domain of the n-dimensional neighborhood, the solution of which is a well known solution of a matrix eigenvalue problem. The eigenvalues are the variance or inertia with respect to the axes given by their respective eigen vectors. The orientation is taken as the axis given by the least eigenvaJ~e~ Moreover it is shown that the necessary computations can be pursued in the spatial domain without doing a Fourier transformation. An implementation for 2-D is presented. Two certainty measures are given corresponding to the orientation estimate. These are the relative or the absolute distances between the two eigenvalues, revealing whether the fitted axis is much better than an axis orthogonal to it. The result of the implementation is verified by experiments which confirm an accurate orientation estimation and reliable certainty measure in the presence of additive noise at high level as well as low levels.
منابع مشابه
Symmetry group, Hamiltonian equations and conservation laws of general three-dimensional anisotropic non-linear sourceless heat transfer equation
In this paper Lie point symmetries, Hamiltonian equations and conservation laws of general three-dimensional anisotropic non-linear sourceless heat transfer equation are investigated. First of all Lie symmetries are obtained by using the general method based on invariance condition of a system of differential equations under a prolonged vector field. Then the structure of symmetry ...
متن کاملLie symmetry analysis for Kawahara-KdV equations
We introduce a new solution for Kawahara-KdV equations. The Lie group analysis is used to carry out the integration of this equations. The similarity reductions and exact solutions are obtained based on the optimal system method.
متن کاملSymmetry in Integer Linear Programming
An integer linear program (ILP) is symmetric if its variables can be permuted without changing the structure of the problem. Areas where symmetric ILPs arise range from applied settings (scheduling on identical machines), to combinatorics (code construction), and to statistics (statistical designs construction). Relatively small symmetric ILPs are extremely difficult to solve using branch-and-c...
متن کاملFault Detection and Isolation of Multi-Agent Systems via Complex Laplacian
This paper studies the problem of fault detection and isolation (FDI) for multi-agent systems (MAS) via complex Laplacian subject to actuator faults. A planar formation of point agents in the plane using simple and linear interaction rules related to complex Laplacian is achieved. The communication network is a directed, and yet connected graph with a fixed topology. The loss of symmetry in the...
متن کاملDetection of signal transitions by order statistics filtering
Abstract— In this article, we present a non linear method for transition detection in signals, based on order statistics filtering. By using a discrete transition model, the method consists in computing a linear combination of the order statistics in the operator window, with coefficients allowing to obtain a response which presents a local symmetry at each transition position. Taking the noise...
متن کامل